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BOUNDARY ELEMENT METHOD FOR LONG-TIME 
WATER WAVE PROPAGATION OVER RAPIDLY VARYING 

BOTTOM TOPOGRAPHY 

A. NACHBIN* AND G. C. PAPANICOLAOU 
Courant lnstituie of Mathematical Sciences, New York University, 251 Mercer Street. New York, N Y  10012, U.S.A. 

SUMMARY 
We study numerically the linear water wave equations for shallow channels with rapidly varying bottom 
topography. We d o  not use the shallow water approximation because it is not valid when the bottom is 
rapidly varying. We use the boundary element method because it allows accurate tracking of the surface 
waves for long times. We present the results of a range of numerical validation experiments and a compari- 
son between propagation over a periodic and a random rough bottom topography. 
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1. INTRODUCTION 

Our primary interest is in studying the propagation of linear water waves in shallow channels in 
the presence of a rapidly varying random bottom topography. We have developed an analytical 
theory for wave reflection based on the asymptotic analysis of stochastic differential equations.’ 
We use the full water wave equations and not the shallow water approximation which is not 
valid’ in channels with a rapidly varying bottom. In this paper we use the boundary element 
method to compute numerically surface waves propagating over rapidly varying bottom topo- 
graphies. We perform several numerical experiments which show that the numerical method gives 
very good results in the regime of the asymptotic theory. 

Let 4(x, y, t )  be the velocity potential and q(x, t )  the surface elevation. The scaled and 
dimensionless linear water wave equations are 

for interior points of the fluid body, with the free surface conditions 

and a Neumann condition at the bottom, 

@,+j?’h’(x)4,=0 on y = - h ( x ) = -  1 + H ( x ) ,  IH(x)I < 1. (3) 
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The bottom topography is given by y=- 1 + H ( x )  and the initial data are 4(x, 0,O) and 
4 t (x ,  O ,O)=-q (x ,  0). We are interested in cases where q(x, 0) has the form of a pulse. The scaling 
is the same as in References 3 and 4. The parameter /3 is the ratio of a characteristic depth and 
a characteristic wavelength. When /3 is small, the channel is shallow. 

Surface water wave propagation is dispersive so the numerical method must accurately 
reproduce the dispersive effects in the solution. We tested two methods: the finite difference 
method (FDM) and the boundary element method (BEM). We computed the exact solution to the 
difference equations (time harmonic FDM) for an arbitrary mesh. We studied different approx- 
imations for the y-derivative (in the free surface condition) and its corresponding numerical 
dispersion relations. We carried out several numerical experiments. We observed that the optimal 
mesh ratio AxlAt is related to the phase speed, which depends on the wave number. Thus the 
difference scheme developed is a restrictive method for problems involving a full band of 
frequencies. We present the analysis and the corresponding results in the Appendix. 

We find that when suitably implemented, the boundary element method has very good 
dispersive properties over a broad range of frequencies. We have done several numerical 
experiments to test the performance of this method. First we have compared numerical com- 
putations of wave pulses propagating over a flat bottom with the near-wavefront approximation 
of the exact solution and found very good agreement. Then we compared the numerical solutions 
of wave pulses propagating over a rapidly varying periodic bottom with the results of the 
asymptotic theory given in Reference 4. This theory predicts that long waves propagate as if in an 
effective channel with a flat bottom and with a speed slightly smaller than the one for the flat 
channel. We find very good agreement between theoretical and computational results. We note 
that this is a severe test of the performance of the numerical method. 

Finally we have computed numerically the reflection of waves in a channel with a random 
bottom topography. As expected,' there is a great deal of difference between propagation over 
a periodic and a random bottom because of wave localization in the random case. The boundary 
element method is thus well suited for capturing different effects in wave propagation in channels 
with periodic and random bottoms. 

2. THE BOUNDARY ELEMENT METHOD 

2.1. Description of the method 

We will review briefly the boundary element m e t h ~ d , ~  indicating some small modifications that 
are needed in the implementation. Let R be the flow domain with the boundary dR divided into 
four parts: 

r, and r,-+the left and right ends of the channel 
r,+the linear free surface 
r,--+the impermeable bottom (not necessarily flat). 

The potential 4(x, y, t) = 4(P ,  t) satisfies the integral equation 

where 

if P is at a smooth part of dR, 
internal angle if P is at a corner of dR, 
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with the free surface conditions 

the bottom condition 
$ n = O  at r, 

1349 

(7) 
and the approximate radiation condition 

(1/ /32)+fi=-$r at rl and I',. (8) 
We use the notation d/dfi = ( P2 a/&, a/a,) (nl , n2 ), where 2 is the outward normal vector to an, 
p = J [ ( ~ , - x , ) ~ + P ~ ( y ~ - y ~ ) ~ ]  and dQ is a line element. The radiation condition allows waves 
with unit speed (i.e. the dimensionless shallow water speed) to propagate out of the computational 
domain. Owing to dispersion and the nature of the pulse-shaped waves, equation (8) is an 
approximate radiation condition. For shallow channels (i.e. f l  small) the dominant modes in our 
experiments are such that kP is small and therefore their phase speed is close to the dimensionless 
shallow water speed. 

We use the point collocation method and linear elements to discretize the integral equation6 
We derive exact integration formulae, similar to the ones presented by Nakayama and W a ~ h i z u , ~  
with the difference that the depth effect is retained through the parameter fl. With these formulae 
we calculate efficiently (through vectorization) the influence of the source points and dipoles, 
located at the end nodes of a given boundary element, on all field points Pi of our mesh. We would 
normally integrate over the contour an, but the pattern of the analytic integration formulae798 
naturally suggests inverting this procedure. Consequently, vectorization is a straightforward task. 

We use the same differencing schemes for the boundary conditions as those in Reference 5 but 
with the parameter P introduced. An implicit free surface condition is derived by combining finite 
difference approximations to the Bernoulli law and the kinematic condition, both at time 
t = (n ++)At. This leads to 

which is used in the discrete integral equation. To update the water eievation ~ ( x ,  t), we use the 
discrete kinematic condition at time t = (n +*)At, 

The parameter 0 is the implicit time-weighting factor. In the next subsection we present 
a truncation error analysis through which we find its optimal value to be 6=&.  We also use the 
discrete radiation condition 

We need to take special care at the corner nodes of the free surface. Three unknowns are 
associated with each of these nodes: 4 and the normal derivatives (to each side) & and 4,. We 
want to solve for +,,. In order to eliminate the other two parameters, we proceed as follows. For 
the vertical boundary element (containing the corner node) we use the radiation condition to 
substitute the normal derivative in the integral equation by the actual value of the potential. The 
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potential is continuous and we use the free surface condition to substitute it for its y-derivative. 
Thus we have one unknown at the corner nodes for both the vertical and horizontal elements 
sharing this node. 

We define the vector of unknowns by 

[&,+'/At * * .  by$'//32 - . .  +fT1 . - *  &f4+'/At]. 

We partitioned this vector according to the type of boundary indicated in the subscript. We also 
scaled the unknowns so that all entries of the matrices are of the same order and consequently the 
system is better conditioned. 

2.2. Dispersion analysis for the free surface evolution scheme 

We will suppose that the integral equation has been solved exactly at some time t. We then 
analyse the dispersive properties of the evolution scheme along the free surface. We eliminate 
q from the difference scheme (equations (9) and (10)) and get 

The parameter 8E [0,1] defines how we average the normal components 4,, of the velocity. We 
will show how to determine it for best results. 

First we present a concise description of the dispersion analysis given by Salmon et al.' In order 
to derive an expression for the relative error of the frequency, they substitute the Fourier mode 
o(x, y, t) = cosh [kB(l+ y)] exp [ i(kx - wt)]  in the equation above and write the numerical disper- 
sion relation for the time evolution difference scheme. It is given in the form of a quadratic 
equation, 

where 
(1 +0p)e-2ioAt- 2[1-(1- O ) p ]  e-ioAr + 1 + 8p =o, (12) 

k tanh(ka) 
2P 

p = A t  

The root related to the correct right-going mode is 

=a-ib. 
- iwAt = 2[1-p(l-O)]-i,,/[8p-4p2(1-2~)] 

2(1 + P O )  
We must have u2 + b2 = 1 for no dissipation/amplification. We can readily check that this is true. 
In the expression above there is a hidden stability condition: the discriminant of the quadratic 
equation must be negative so that the roots are conjugate complex numbers. 

The root's argument will lead to an expression for the numerical frequency, 

o A t  = tan- 

When we refer back to the definition of p ,  we see that 

J ( 2 p )  = oeXactAt Z. 

The exact frequency o,,,,, is obtained from the dispersion relation 

o2 = p  k tanh(k/3). 
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The relative error for the frequency is given by 

Salmon et al. plotted curves which show the dependence of this error on the parameter 8. We have 
reproduced some of these curves in Figure 1. They suggest the value 8=0.17, but for small At we 
see that the value 8=0.165 leads to a better approximation. This family of curves is interesting 
because we can see that a full band of frequencies can be approximated well. This is an important 
feature for problems involving pulse-shaped waves. 

We now present a different dispersion analysis which will lead to the optimal value of the 
parameter 8. We write the numerical dispersion relation as 

2 4 1  - e ) z 2  
COS(COAS~) = =I&). 

2 + 6z2  

In Reference 5 the condition for stability is that the roots defined above are such that u2 + b2 = 1. 
No explicit constraint for At is given. The true condition for stability can be found in their 
analytical calculations. We see from the numerical dispersion relation given above that uncondi- 
tional stability implies Ill/(z)I< 1 and therefore We know that our scheme is only condi- 
tionally stable since 6 ~ 0 . 1 7 .  This gives a constraint on the time step. 

We now show how to find the best value of 6. We take equation (11) and consider the Taylor 
expansions that generated this scheme. We obtain the one-parameter family of differential 
operators (for small time steps) 

8=0.168 
B=O. 165 
8=0.175 

I I I I I I I I 

wAt 
,. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Figure 1. Numerical frequencies’ error for different values of 9 
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We suppose that the time step is small enough so that the fourth-order differential equation 
obtained from the first four terms is considered as a continuum version of the difference scheme. 
Its properties are more closely related to the difference scheme than those of the original equation 
(obtained when At =O).  If we let 8=&=01666. . . , this equation has the same dispersion relation 
as our original problem. Hence 8=0.17 is a very good approximation for this parameter but its 
optimal value is i. In other words, Do will be a fourth-order scheme if we take this value. The 
stability condition for the scheme with tl=& is 

A t < - .  J 6  
w 

3. NUMERICAL ASYMPTOTICS USING THE BOUNDARY ELEMENT METHOD 

3.1. Gaussian pulse propagating over aJlat bottom 

We are dealing with a boundary-initial value problem. Given the initial data for the water 
elevation we need to compute the initial boundary data (Dirichlet and Neumann) for the wave 
potential 4. In the asymptotic theory presented in Reference 1 the initial disturbance is assumed 
to be propagating (at time t =0)  with unit speed. It is an exact solution only in the /3=0 limit. In 
the present study we consider approximate initial data for the potential. We observed the 
numerical consequences of this approximation and found that the error made is negligible. 

We want to study computationally the propagation of a wave with the initial elevation given by 

We now calculate the approximate Dirichlet and Neumann data for the potential. We consider 
that at time t = 0, q and 4 are functions of x - t (as in Reference 1). We write for the initial velocity 
potential (using the linear Bernoulli law) that 

4(x, 0,O) = o 

We calculate the initial Neumann condition from the kinematic condition to get 

ePu2 du. j: 

The approximate initial Dirichlet and Neumann conditions at the free surface are 

where erf(x) is the error function.' We find the order of the approximation made by looking at the 
Fourier transform of the initial conditions. We compare it with the exact ones to see that the error 
made in the Fourier coefficients of the initial Dirichlet and Neumann data is O ( k 2 p z ) .  This error 
is negligible along the wavefront where small wave numbers k are dominant. We will confirm this 
fact numerically. 

We have the complete set of (approximate) boundary data along r,, The normal derivative at 
the bottom r, is always zero and we do not need to know the initial potential along the bottom. 
We compute the initial value of the potential along the lateral boundaries rl and r,, by extending 
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its value at the corners of the free surface all the way to the bottom. This is again an 
approximation taking into account that p< 1 and that the ends of the channel are far enough 
from the centre of the Gaussian pulse. 

We will compare the long-time behaviour of the computed solution with a near-wavefront 
approximation of the Fourier representation of the exact solution. We have a full band of 
frequencies and therefore this is an important test for the BEM’s dispersive behaviour. 

Let the parameter p be small so that we are in the finite depth, shallow water regime. We still 
have a dispersive system although the depth is small compared to the wavelength. We let 
o=+ W(k) be the two modes obtained from the dispersion relation (14). We express the water 
elevation as a superposition of the right- and left-going modes, 

We proceed by doing a near-wavefront analysis as in Reference 3. We consider the group moving 
to the right with unit speed. From a stationary phase analysis we know that the only contribution 
will come from the stationary points. For the unit group speed we have only k=O, where 
W”(0) =O and W”’(0) #O.  This indicates an O(t-  ‘ I 3 )  decay of the front as t --*m We expand both 
the amplitude F , ( k )  and the frequency W(k) about k = O  for the right-going modes: 

We have taken only the first term in order to be consistent with the stationary phase results. We 
define y = b2/6 and get that 

with z =(x - t ) / ( 3 ~ t ) ’ / ~  and where Ai(z) is the Airy function. 
In our computations we consider a=0.3 so that the effective support of the pulse is approx- 

imately unity. The effective wave numbers range from zero to 12 (approximately). Using the 
dispersion relation (with B= 0 2 ) ,  we have that the effective band of frequencies is in the interval 

We let the wave propagate in a long channel 60 times the effective pulse width. We present the 
results for the long-time behaviour in Figures 2 and 3. The numerical solution agrees with the 
Airy function in the neighbourhood of the front. Behind the front high-frequency terms dominate 
and therefore the expansions about k = 0 are not accurate. There the Airy function is not a good 
approximation. When we observe the numerical solution at later times (Figure 3) and therefore at 
a point further away from the origin (note that the shallow water speed is unity), we find that the 
results agree more closely with the Airy function also in the tail. This shows that the numerical 
method performs well also for the non-dominant terms when we allow the numerical solution to 
evolve for long-time intervals. 

We verify computationally that our numerical method is stable and conserves the total energy 
by keeping track of certain conserved quantities. Stoker” shows that for linear water waves the 
total energy 

LO, 81. 

a a 
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o.6 1 - Airy 
_ _  numerical 

0 

Figure 2. Near-wavefront approximation and numerical solution observed at x = 14.091 (i.e. Airy function is centred at x) 
with 8=0.2 
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Figure 3. Near-wavefront approximation and numerical solution observed at x=60.197 (i.e. Airy function is centred at x )  
with /?=0.2 
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is conserved in time. Our code will control two quantities related to the total energy. First we 
consider the kinetic energy 

21 I (V,4)z dR, 

with the gradient defined as V8=(pa/ax, a/d,). We integrate by parts to get 

1 
Kin@) = C#I $ dQ. 

Next we define as the volume excess the total amount of water added to a previously undisturbed 
configuration, namely we have that 

Vol(t) = ?(X, t )  dx. 
j:m 

In order to compute Kin(0) for the problem with a Gaussian pulse, we may consider initially 
the normal derivative of the potential to be zero at r1ur3ur4 so that integration is restricted 

The volume excess will be 

We take 0=0.3. Therefore Kin(0)=0.1879971 and Vol(0)=0.5317362. 
We use Simpson’s rule to compute these quantities at each time step. We show how these 

integrals depend on p in Figures 4 and 5. We can see that as we go into the shallow water regime, 
the code responds adequately and a more coherent behaviour of the pulse is observed. The 
limiting features of pure advection are captured for small p. 

The oscillations in the volume excess graph show that after the wavefront leaves the computa- 
tional domain, an oscillatory wavetrain follows (owing to dispersion). These oscillations tend to 
disappear as p decreases. The oscillations in the kinetic energy (Figure 5 )  indicate the presence of 
a velocity component which is not present in the shallow water limit. 

We have shown that important quantities are conserved and also that the radiation condition 
is absorbing the outgoing waves properly. 

3.2. Gaussian pulse propagating over a rapidly varying periodic bottom 

In Reference 4, Rosales and Papanicolaou show that for the non-linear equations, if we 
specialize a multiscale asymptotic expansion to right-going disturbances (i.e. using functions of 
the type $&t, x- Ct, x/JE, y)), the effective shallow water speed C can be calculated from 
a solvability condition. Straightforward inspection of their calculations shows that the same 
condition is true in the linear case. We assume that the periodic bottom to ography is described 
by the function y=-h(x)=- 1 +H(x/Je), with IH(x/,/E)I c 1 and H(x/J)=H(l +x/Je). The 
solvability condition for the second term in the expansion (i.e. the order-JE equations) leads to 
the formula 

C2 = 1 - 1; h,(z)A(z, - h(z)) dz < 1. (19) 
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Figure 4. Volume excess Vol(t) 
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Figure 5. Kinetic energy Kin(?) 
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The constant C is the effective shallow water speed in the periodic medium. Thus long waves are 
delayed with respect to the flat bottom case, where C = 1. Here z = X/JE is the fast variable. The 
function h(z) is periodic with period unity and we get the auxiliary function A(z, y) from the cell 
problem 

A,,+A,,=O in O < z c l  and -h(z)<y<O, (20) 
with 

A,+h,A,=-h, on y=-h(z), 

A,=O on y=O. 

We assume periodic dependence in z and we impose that the cell average jjcellA(z, y) dz dy is zero. 
We consider a simple case so that the problem above can be solved analytically and the 

numerical speed verified. Take a periodic bottom of the form 

y = - h (z) = - 11 - JE n (z)]. 

We approximate the cell problem (20) by 

A,,+A,,=O in O < z < l  and - l < y c O ,  
with 

A,=O at y=O. 

h(z) = 1 - JE sin (nz) 

We define for the bottom’s profile 

and we consider the expansion 

A(z ,  y)=AO(z, Y)+JEAl (Z ,  Y)+EA2(2, y ) + P A 3 ( z ,  y)+. . ’, 
with JJccllAj(z, y) dz dy = 0, j = 0, 1, . . . . We solve for each term in the expansion: 

a’ cosh(ay) cash (3ay) 
A3(Z, y)=--(--- 8 sinha cos(nz) - 2 sinh(3x) 

The speed is computed approximately by using (23) and (24) in expression (19): 

n3 ( j: cosh[~h(z)]cos’(zz)dz 
a 1  

C2=1-&- C O S ~  [xh (z)] COS’ (ZZ) dz - E’ - - 
sinh a lo 8 sinhn 

- C O ~ ~ [ ~ ~ ~ ( Z ) ] C O S ( ~ Z ) C O S ( ~ ~ Z ) ~ ~  

We use a Gauss-Legendre quadrature for these integrals, with h(z) given by (22). The resulting 
effective speed is C = 0.993 approximately when JE = 0.1. 

In our numerical experiment we a proximate the sinusoidal bottom as a series of triangular 
bumps of base and height equal to d. We take the parameter fl to be equal to JE. We find the 
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Figure 6. Slower effective speed due to periodic bottom 

speed of the numerical solution by computing the Airy function as before, but with x - Ct instead 
of x - t .  The observed numerical speed is C =0.9822. In Figure 6 we compare our results with the 
Airy function. Only the front of the Airy wave is shown. The numerical solution’s speed and the 
effective shallow water speed disagree by only 1%. We discuss the discretization of the bottom at 
the end of the next subsection. 

In Figure 6 we also show that the wavefront is exactly like the one for the flat bottom. We do 
not see any substantial reflection, which indicates that the bottom has been homogeneized (see 
also Figure 7). Making an analogy with composite materials, we can consider the rough periodic 
region as an effective homogeneous ‘material’ of smaller ‘conductivity’, since the effective speed is 
smaller. The theory we developed’y8 can be used to show that in the presence of a rapidly varying 
periodic topography, no substantial reflection is generated. 

3.3. Periodic versus random: numerical observation of localization 

We now study the effect of a random component along the bottom’s profile. We make 
a random perturbation (10% noise) of the periodic bottom described above. That is, we allow the 
heights of the triangles to be independent and uniformly distributed random variables in 
[0-09,0.11]. We see in Figure 7 that randomness has a tremendous influence on the reflected 
signal observed at a fixed point to the left of the rough region. The bigger spike at the beginning is 
due to the transition from flat to rough. We have no reflection from the periodic bottom. The 
substantial change in the reflected signal, from such a small change in the bottom’s profile, is 
a manifestation of localization. This means that all proper modes decay exponentially as they 
propagate in a random medium. The rate of decay depends on the wavelength and on the total 
length of the random 

We used linear boundary elements in the discretization of the bottom contour, one on each side 
of the triangular bumps. We conducted several tests to ensure that the coarse discretization and 

11, l2 
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Figure 7. A periodic versus a random bottom 

the sharp tips of each bump have no spurious effect on the reflected wave. We compared the 
two-element-per-bump discretization against a finer mesh with six elements per bump. The 
reflected signals are indistinguishable. We also considered six elements on a sinusoidal bump and 
compared them with the previous case. We found that no additional reflections are generated 
from the sharp tips of the bottom's irregularities. 

We have developed an analytical theory for the statistics of the reflected wave.',* We needed 
several realizations of the bottom's profile (by considering it as a stochastic process) in order to 
have a numerical verification of this theory. Thus an efficient and fast code was required. We 
concluded from the discretization study mentioned above that accuracy is maintained (regarding 
the reflected signal) when we use a coarse mesh along the bottom. Hence we were able to perform 
experiments in which the rough channels were long compared to the pulse-shaped wave. We 
present the comparison between the results from the asymptotic analysis of stochastic differential 
equations and the numerical experiments in Reference 1. 

4. FINAL REMARKS 

We studied numerically the linear water wave equations for shallow channels with a rapidly 
varying bottom topography. We used the boundary element method (BEM) to compute the 
propagation of surface waves for long times. The BEM gives an accurate approximation to the 
dispersion relation (by using O = i ) .  We used linear elements which allow a straightforward 
vectorization of the code. Here is an example of the efficiency of the BEM. We discretized a long 
channel in which we had a mesh of 1044 nodes. The vectorized assemblage of the two non- 
symmetric dense matrices (for both the single- and double-layer potentials) is done in 1.4s. 
A vectorized version of Linpack LU-factorizes (O(N 3)) the system's matrix in 5.4 s approximately 
and each time step takes 0.024 s. We used a total of 1800 time steps and a complete run takes 
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approximately 50-0 s of CPU time on an ETA10. For an even longer channel (used to generate 
Figure 3) we used a mesh with 2480 nodes and 4800 time steps. This experiment requires 
13 Mwords of memory and takes approximately 7 min on a Cray Y-MP. 

The experiments presented in this paper show that with the BEM we are able to capture several 
asymptotic properties of water waves. The long-time behaviour of a surface pulse-shaped wave is 
an important test regarding dispersive effects. The agreement with an Airy function shows that 
the dominant modes can be propagated accurately for large time intervals. We also showed that 
the code is robust in the shallow water regime for small but finite values of the parameter B. We 
saw the interaction between the surface wave and the rapidly varying periodic bottom through 
the effective shallow water speed. Finally we compared a periodic with a random topography. 
Even though the two channels were similar, the reflected waves generated were quite different. 

We conclude that the BEM is a reliable method, with features that enabled the numerical 
reproduction of the results from the asymptotic theory for stochastic differential equations. The 
quantitative agreement between computation and theory is presented in Reference 1. 
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APPENDIX: THE FINITE DIFFERENCE METHOD 

In this appendix we comment briefly on numerical dispersion. We consider the channel to be flat 
and to have periodic boundary conditions at its right and left ends. 

We discretize the free surface conditions as follows: for a point xj=jAx, 

Dp4" q n + l - q n  
(kinematic condition at t.), -- - 

P' At 

where Dpq5 is an approximation to & ( x j ,  0, t.) using p nodes in the negative y-direction. We will 
study three different schemes for D,. 

We consider the Fourier mode 

4(xj, Y,, tn )=q5y , l=  Y(-IAY)~xP C i ( k x j - ~ J l  (28) 
in order to study the dispersive properties of the discretized problem. The function Y(y) is 
unknown. We solve for Y(y) by performing the discrete harmonic extension of a mode of 
amplitude Y(0) given at the free surface. We eliminate q in (26), (27) and solve an L x L system of 
equations for the function Y(-lAy), I =  1,. . . , L. We will show that the numerical dispersion 
relation is of the form 

F,(Ax, Ay; k, 8) 1 -COS(O At) 
At2 

= 2  
P2 
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The numerical frequency is given by o. It depends on the wave number k, the parameter p and the 
discretization adopted. A condition for stability (i.e. real-valued frequencies) is 

Note that p small (shallow water) may require changes in the grid in order to avoid instabilities. 
We now calculate the function F, explicitly, where p indicates the number of nodes used for the 

discrete y-derivative. By A, we denote the determinant of the submatrix obtained from the last 
j rows and columns of the linear system of equations. We substitute (28) in the standard 
(five-point molecule) difference scheme for the Laplacian to get 

where 

a = 2 + ( ~ K A Y ) ~  = 2 + r2 ,  LAY = 1 (uniform unit depth), (32) 
- J(2[l-cos(kAx)]} k =  

Ax (33) 

The coefficient & in the forcing term is due to the Dirichlet boundary condition at the top (i.e. 
a known value of the potential) and the coefficient a - 1 is due to the Neumann condition along 
the impermeable flat bottom where the one-sided difference gives Y-L+ = Y-L. 

By Cramer’s rule Y- = &(AL-2/AL- 1), where these determinants satisfy the recurrence rela- 
tion A N  = aAN - - A N -  2.  We consider solutions of the form AN which lead to the roots 

J(4+rZ). 
r2  r r 2  r 

&=1+--- 
A1=1+-+-,/(4+rZ), 2 2  2 2  (34) 

We get by straightforward manipulations that AL.-Z/AL- =A(&), with 

We now have a general formula for Y- only in terms of the root A2 and the total number of nodes 
in the y-direction (L  + l-counting free surface and bottom), namely 

Y- 1 = YoA(22). (35) 
By forward substitution we get 

Y-2= & [ d ( A Z ) -  11, 
Y-3 = y0 [ ( a 2  - l)A(&)-a], 
Y-4= Yo[(a3-2a)A(A2)-(aZ-1)]. 

We introduce the following approximate y-derivative formulae: 

(36) 
&- Y-1 1 

AY AY 
two-point c, Dz Y( y) = ~ and Fz(Ax, Ay; k, p)=-[l-A(Az)I, 
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(37) 
3&-4Y-1+ Y-2 r2  

and F 3 =  1-- F 2 + - ,  ( :) 2Ay three-point t, D 3  Y(  y) = 
2AY 

25 & -48 Y- 1 + 36 Y- 2 - 16 Y- 3 + 3 Y- 4 
five-point t, D5 Y(  y) = and 

12Ay 

(38) 
- (3a3 - 16a2 + 3 0 ~  - 32) F2 

12 
3a3 - 19~' + 4 6 ~  - 40 

12Ay + F5= 

These are all one-sided difference schemes at the free surface y=O. We get the numerical 
dispersion relation corresponding to a given difference scheme by using these formulae in (29). 
The exact dispersion relation is 

(39) 
k 

w2 = B  tanh(k/3). 

We compare in Figures 8 and 9 different numerical dispersion curves against the exact one. We 
use a finer mesh in Figure 9 and obtain a better approximation to the exact dispersion curve. 
Convergence for the low frequencies is slower than for the higher ones. 

We have decoupled the water wave equations in such a way that we solve two partial 
differential equations in succession: a boundary value problem at each time step and the 
evolution of its boundary data. We now verify that the numerical dispersion curve converges to 
the exact one. We start by computing the limiting value of the function F ,  as r-0, keeping 
LAy=l. Note that A 2 + 1  and t?+1 as i-0, that A;2L+e2kp as L+oo and therefore 

'""1 - exact dispersion curve 

t 
+ 2.0 

0.0 I I I I I I I I I 1 
1 2  3 4 5 6 7 8 9 10 

wavenurnber k 

Figure 8. Dispersion curves for different approximations of &(x, 0, t). The spacing is Ax = 1/40, Ay = 1/20 and At = 1/40 
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Figure 9. Dispersion 

"'1 - exact disoersion curve 

0.0 ' I I I I I I I I I 1 
1 2  3 4 5 6 7 8 9 10 

wavenumber k 

curves for different approximations of +y(x ,  0, t). The spacing is Ax= 1/80, Ay = 1/40 and At = 1/80 

Figure 10. Results when the approximation of 4yr(x, 0, t )  is improved. The node spacing used is Ax=2n/40, Ay= 1/20 and 
At = 114~5877/4000 
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10.0, 

-10.0 ’ [ I I I I I I I I I 

2 4 6 8 10 12 14 16 18 20 

nodes along free surface 

Figure 11. Results showing the Ax/At dependence. The node spacing is Ax=2n/20, Ay= 1/10 and At= ll.45877/MT 

We use this result in connection with each function F ,  and we let Ax and At go to zero. The 
limiting form of the numerical dispersion relation (29) follows. It agrees with the exact dispersion 
relation for each value of p ( p  = 2, 3,5). The order in which we let Ax, Ay and At go to zero does 
not affect the convergence but is important for stability. If we violate the stability condition, 
w+o,,,,~ through the complex plane. 

We have introduced an error which is second-order in the mesh size (by solving the discrete 
Laplacian). We used these approximate values of 4 to calculate the discrete y-derivative Dp$ 
(p=2,3,5).  The interesting fact is that higher-order schemes (such as p = 3  and 5) will lead to 
a more accurate numerical dispersion relation even though we started with a second-order 
approximation of $ (see Figures 8 and 9). We observed this numerically and the results are 
presented in Figure 10. 

The essence of the discussion above is that the discrete y-derivative must be computed 
accurately. We immediately see an advantage of the BEM with respect to the FDM: no discrete 
y-differencing is needed. The quantity $y is obtained directly from the system of equations. 

Finally we also observed numerically that the evolution of ‘1 depends on the ratio Ax/At. The 
optimal ratio is Ax/At = C(k) ,  the phase speed, which is very restrictive when we superimpose 
different modes. Figure 11 shows how this ratio affects the propagation of a single mode. 
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